Setup

BIOS significa “Basic Input Output System”, ou “Sistema Básico de Entrada e Saída”. Um computador é composto de hardware e software. O hardware é toda a parte física do micro: placa mãe, processador, memórias, disco rígido, etc. Enquanto o software é a parte lógica que coordena o seu funcionamento. O BIOS é justamente a primeira camada de software do sistema, que fica gravado em um pequeno chip na placa mãe, e tem a função de “dar a partida”, reconhecendo os dispositivos instalados no micro e realizando o BOOT. Mesmo depois do carregamento do sistema operacional, o BIOS continua provendo muitas informações e executando tarefas indispensáveis para o funcionamento do sistema.

Muitas das funções executadas pelo BIOS podem ser personalizadas ao gosto do usuário. O Setup é justamente o programa que nos permite configurar estas opções. A velocidade de operação das memórias, o modo de funcionamento dos discos rígidos, e em muitos casos até mesmo a velocidade do processador, são configuráveis através do Setup. Uma configuração errada do Setup pode tornar o sistema até 90 ou 95% mais lento do que com uma configuração otimizada. Claro que esta é uma projeção apocalíptica, que só seria alcançada por alguém que intencionalmente configurasse o Setup visando obter o pior desempenho possível, mas que ilustra bem como “simples” erros de configuração podem tornar o sistema lento.

Em quase todos os modelos de BIOS, encontramos uma opção de configuração do Setup usando valores default sugeridos pelo fabricante. Estes valores visam que o sistema funcione com o máximo de estabilidade, porém usando-os sacrificamos um pouco do desempenho.

Geralmente, com configurações otimizadas dos valores do Setup, é possível obter um ganho de performance de 10 ou até 20% sobre os valores defaut. Muitas vezes também, é preciso mudar os valores do Setup para resolver algum conflito entre dispositivos, ou mesmo poder instalar algum periférico em especial. Um exemplo clássico é a opção “Assign IRQ to VGA” que deve estar habilitada para que a maioria das placas de vídeo 3D funcionem corretamente, mas que, em muitas placas mãe, fica desabilitada usando os valores defaut.

CMOS: CMOS significa “Complementary Metal Oxide Semicondutor”. Nos primeiros PCs, como os antigos XTs e alguns 286s, todos os dados referentes à configuração dos endereços de IRQ, quantidade e velocidade das memórias, HDs instalados, etc. eram configurados através de jumpers na placa mãe. Não é preciso dizer que a configuração de tais jumpers era um trabalho extremamente complicado. Para facilitar a vida dos usuários, foi criado o Setup, que permite configurar facilmente o sistema.

A função do CMOS, uma pequena quantidade de memória RAM, de geralmente 128 ou 256 bytes, é armazenar os dados do Setup para que estes não sejam perdidos quando desligamos a máquina. Toda vez que o micro é inicializado, o BIOS lê estes valores e opera de acordo com eles. Porém, justamente por ser um tipo de memória RAM, o CMOS é volátil, ou seja: seus valores são perdidos quando ele deixa de ser carregado eletricamente. Justamente por isso, é usada na placa mãe uma pequena bateria que se destina a alimentar o CMOS. Claro que esta bateria não dura para sempre, de modo que periodicamente, a cada 2 ou 3 anos, é preciso trocá-la.

POST: Durante o boot, o BIOS realiza uma série de testes, visando detectar com exatidão os componentes de hardware instalados no micro. Este teste é chamado de POST (pronuncia-se poust), acrônimo de “Power-On Self Test”. Os dados do POST são mostrados durante a inicialização, na forma da tabela que aparece antes do carregamento do sistema operacional, indicando a quantidade de memória instalada, assim como os discos rígidos, drives de disquetes, portas seriais e paralelas e drives de CD-ROM padrão IDE instalados no micro.

Além de detectar o hardware instalado, a função do POST é verificar se tudo está funcionando corretamente. Caso seja detectado algum problema em um componente vital para o funcionamento do sistema, como as memórias, processador ou placa de vídeo, o BIOS emitirá uma certa seqüência de bips sonoros, alertando sobre o problema. Problemas menores, como conflitos de endereços, problemas com o teclado, ou falhas do disco rígido serão mostrados na forma de mensagens na tela.

Apesar de sua importância, o BIOS é um programa como outro qualquer, mas que, ao invés de ser gravado no disco rígido, fica armazenado em um chip de memória na placa mãe. Antigamente, eram usados chips de memória ROM para armazenar o BIOS. A memória ROM é somente para leitura, sendo seu conteúdo inalterável. Nas placas mãe mais atuais, porém, o BIOS é gravado em memória Flash. O uso deste tipo de memória visa permitir que o BIOS seja modificado, de modo a corrigir eventuais bugs ou aumentar o grau de compatibilidade da placa mãe, adicionando novos recursos.

A esta atualização damos o nome de “upgrade de BIOS”. Os fabricantes deixam tais upgrades disponíveis em suas páginas na Internet para download gratuito, sendo que, o upgrade geralmente vem na forma de uma arquivo binário (.bin) e um utilitário que faz a gravação dos dados no chip que armazena o BIOS. De posse dos arquivos necessários, basta iniciar o micro através de um disquete de boot e executar o utilitário que fará a gravação.

Durante o upgrade, os dados do BIOS são completamente reescritos, processo que costuma durar poucos minutos. O problema é que se a atualização for interrompida, por um pico de luz que resete o micro, ou mesmo um esbarrão no botão liga-desliga, o BIOS ficará danificado, provavelmente impossibilitando até mesmo iniciar o micro para recomeçar a atualização, inutilizando a placa mãe. Justamente por isso, os fabricantes não costumam dar nenhum tipo de garantia sobre danos causados por um upgrade de BIOS mal sucedido, alegando que o usuário deve correr seus próprios riscos.

A maioria das placas atuais, apesar de permitir a alteração do conteúdo do BIOS, trazem as rotinas básicas (as que presume-se que não precisarão ser alteradas) gravadas em memória ROM. Neste caso, mesmo depois de um upgrade mal sucedido, ou de um ataque do Chernobil ou outro vírus semelhante, ainda restaria esta porção do BIOS gravada em ROM.

Apesar de tratar-se apenas de algumas rotinas mais básicas, temos o suficiente para inicializar o micro e regravar o BIOS titular. Você precisará de uma placa de vídeo ISA, pois este “BIOS de reserva” não é capaz de acessar uma placa de vídeo PCI. Instalando a placa de vídeo ISA, você deverá ser capaz de inicializar a máquina, dar um boot via disquete (apesar das mensagens de erro que irão surgir) e regravar o BIOS danificado.

Algumas placas mãe atuais estão trazendo um novo recurso, chamado “dual-bios”, que como o nome sugere, consiste no uso de dois BIOS na mesma placa mãe. O primeiro é o que é atualizável via software e que é usado normalmente, enquanto o segundo serve como um backup.

Se algo acontecer com o BIOS titular, este será automaticamente regravado usado o BIOS de backup, sendo apenas exibida uma mensagem durante o boot a fim de avisar o usuário.

O BIOS reserva não pode ser regravado via software, por isso jamais acontecerá dele ser danificado. Apesar de ainda não ser usado em muitas placas mãe, justamente por ser um recurso razoavelmente caro do ponto de vista do fabricante, é possível que daqui a algum tempo a maioria das placas mãe venham com este recurso que, sem dúvida, garante uma segurança muito maior ao usuário.

os dados do CMOS são guardados em uma pequena quantidade de memória volátil. Esta memória é sustentada por uma bateria, o que evita que seus dados sejam perdidos quando desligamos o micro. Assim, para apagar os dados do CMOS basta retirar momentaneamente a bateria que o sustenta.

Na maioria das placas mãe, é usada uma bateria de relógio comum, que pode ser retirada com facilidade, em outras é usada uma bateria fixa. Em ambos os casos, é possível zerar o CMOS sem dificuldade.

Bateria de relógio: Se a sua placa mãe utiliza uma bateria comum, basta abrir o gabinete, e retirar a bateria, recolocando-a no lugar alguns minutos depois. Para acelerar este processo, você pode usar uma moeda ou qualquer outro objeto de metal para causar um pequeno curto que apagará instantaneamente os dados do CMOS, sem contudo causar qualquer dano. Claro que você deve fazer tudo isto com o micro desligado, ligando-o novamente somente após recolocar a bateria

Bateria fixa: Em muitos casos, é usada uma pequena bateria que é soldada diretamente na própria placa mãe, a qual é um pouco mais difícil de retirar. Neste caso, basta, mudar de posição um jumper específico da placa mãe, chamado “CMOS Discharge Jumper”, normalmente um jumper com 3 pinos, que fica na parte traseira da placa, próximo ou entre os slots ISA. Basta alterar a posição do jumper, recolocando-o na posição original depois de alguns minutos para apagar os dados do CMOS.

Algumas placas mãe, em geral modelos mais antigos, de micros 386 ou 486, usam uma bateria externa localizada dentro de uma caixa preta de plástico pouco maior que uma pilha pequena, para armazenar os dados do CMOS, sendo conectada a um encaixe de 3 pinos na placa mãe. Para zerar o CMOS, basta desconectar a bateria e reconectá-la após alguns minutos.

Configurando o CMOS

O Bios é o primeiro sopftware a ser carregado quando da inicialização do sistema. A função do mesmo é configurar vários recursos da placa mãe, principalmente os endereços de IRQ e DMA usados pelos periféricos instalados, e em seguida dar a partida no micro, carregando o sistema operacional e passando para ele o controle do sistema.

O Setup por sua vez é um pequeno programa que permite configurar o Bios. A função da bateria da placa mãe é justamente manter as configurações do Setup quando o micro é desligado. Para acessar o Setup basta pressionar a tecla DEL durante ca contagem de memória. Em algumas placas mãe é preciso pressionar a tecla F1, ou alguma outra combinação de teclas. Em caso de dúvida necessário consultar o manual da Placa.

Standard CMOS Setup (Standard Setup) > Configuração do drive de disquetes, data e hora e do disco rígido.

BIOS Features Setup (Advanced CMOS Setup) > Aparece bem abaixo da primeira opção. Este menu armazena opções como a seqüência de boot, se o micro inicializará pelo HD ou pelo drive de disquetes, por exemplo, e também a opção de desabilitar os caches L1 e L2 do processador.

Algumas opções podem aparecer com nomes diferentes, dependendo da marca e do modelo do BIOS. A opção “CPU Internal Cache”, por exemplo, aparece em alguns BIOS como “CPU Level 1 Cache” ou “L1 Cache”. Em casos como este, usarei o nome mais comum da opção, colocando os demais entre parênteses.

Chipset Features Setup (Advanced Chipset Setup) > Esta sessão armazena opções relacionadas com o desempenho da memória RAM e da memória cache. Em placas mãe antigas, onde o cache L2 ainda fazia parte da placa mãe, esta sessão trazia uma opção que permitia selecionar a velocidade de funcionamento do cache da placa mãe. Nas placas atuais, onde a freqüência de operação do cache L2 diz respeito apenas ao processador, as opções mais importantes localizadas nessa sessão dizem respeito à memória RAM.

PCI / Plug and Play Setup > Nesta sessão, você pode configurar manualmente os endereços de IRQ e DMA ocupados pelos periféricos. Mas, se todas as placas mãe atuais são plug and play, por que ainda existe este tipo de opção? O problema surge se você for instalar uma placa de som, rede, modem, ou qualquer placa antiga, que não seja plug and play. Estas placas antigas, também chamadas de periféricos de legado, não aceitam que o Bios determine quais endereços devem ocupar, elas simplesmente invadem o endereço para o qual estejam configuradas.

Já que não se pode vender o inimigo, o jeito é fazer um acordo com ele. Neste caso você deve entrar nesta sessão do Setup e reservar os endereços de COM e IRQ ocupados pela placa antiga. Se por exemplo cair nas suas mãos uma placa de som antiga, que use o IRQ 5 e o DMA 1, selecione para os dois endereços a opção “Legacy/ISA”, isto orientará a placa mãe a deixar estes endereços vagos para serem usados pela placa de som.

Naturalmente você só precisará se preocupar com esta sessão ao mexer com equipamentos antigos, ao montar um micro novo você nem precisará lembrar que ela existe, bastará manter os valores defaut para as opções. Além da configuração manual dos endereços, esta sessão contém opções que permitem resolver muitos conflitos de hardware que podem vir a surgir.

Power Management Setup > Aqui estão reunidas todas as opções relacionadas com os modos de economia de energia. Estas opções, de desligamento do monitor, disco rígido, modo standby, etc. podem ser configurados dentro do Windows, por isto não existe necessidade de configura-las aqui no Setup. Caso a sua placa mãe tenha sensores de temperatura do processador, de rotação do cooler, ou das voltagem de saída da fonte de alimentação, todos os dados aparecerão dentro dessa sessão, do lado direito da tela.

Integrated Peripherals (Features Setup) > Esta é uma das sessões mais úteis atualmente. Aqui você pode desabilitar qualquer um dos dispositivos da placa mãe, incluindo as portas IDE, a porta do drive de disquetes, porta de impressora, portas seriais etc., além de configurar algumas outras opções e os endereços de IRQ ocupados por estes dispositivos.

IDE HDD Auto Detection (Detect IDE Master/Slave, Auto IDE) > Ao instalar um disco rígido novo, não se esqueça de usar esta opção para que o Bios o detecte automaticamente.

 

Standard CMOS Setup (Standard Setup):

São configurados aqui basicamente o tipo de drive de disquetes usado, HD e a opção Halt On, que interrompe a inicialização do micro caso seja detectado algum dos problemas especificados.

Hard Disks > Este item do Setup mostra os discos rígidos que estão instalados no computador. Para detectar os discos instalados, basta usar a opção de IDE HDD Auto-Detection que se encontra na tela principal do Setup.

Geralmente, este item não aparece exatamente com o nome “Hard Disks”. Nos BIOS Award com interface modo texto por exemplo, aparece na forma de uma tabela que mostra os parâmetros de cada disco instalado.

Nos BIOS AMI com interface gráfica, geralmente temos este item subdividido em Primary Master, Primary Slave, Secondary Master e Secondary Slave, cada um exibindo as informações de um disco em particular.

Apesar de não ser recomendável, você pode configurar seu disco manualmente. Neste caso, você deverá fornecer o número de cabeças de leitura (Head), cilindros (Cyln), setores do disco (Sect), além do cilindro de pré-compensação de gravação (WPcom) e a Zona de estacionamento das cabeças de leitura (LZone). Você pode fazer as modificações através da opção Detect IDE HDD encontrada na tela principal do Setup.

Existem também tipos pré-definidos de discos, que geralmente vão do 1 ao 46. Antigamente, existiam poucos tipos de discos rígidos, bastando configurar aqui o modelo correspondente. Naquela época ainda não existia a opção de IDE HDD Auto-Detection, mesmo por que nem existiam discos IDE :-). Nos manuais desses discos mais antigos, existiam instruções como “Definir este disco como tipo 21 no Setup”. Estas opções são herdadas de BIOS mais antigos, com o objetivo de manter compatibilidade com esses discos obsoletos, não sendo utilizáveis em nenhum disco atual.

Floppy Drive A > Esta é a manjada opção de configuração do drive de disquetes. Caso o micro não tenha um, não se esqueça de configura-la como disabled.

Halt On > Aqui podemos indicar qual procedimento o BIOS deverá tomar, caso sejam detectados erros de hardware durante o POST. Ao ser encontrado algum conflito de endereços (do modem com o mouse por exemplo), o sistema poderá parar a inicialização e exibir na tela uma mensagem com o endereço em conflito, para que possamos tentar resolvê-lo, ou mesmo ignorar o erro e tentar inicializar o sistema, ignorando os problemas. As opções aqui são:

All Errors: A inicialização será interrompida caso exista qualquer erro grave na máquina: teclado não presente, configuração errada do tipo de drive de disquetes instalado ou mesmo um conflito entre dois dispositivos.

No Errors: O BIOS ignorará qualquer erro e tentará inicializar o computador apesar de qualquer configuração errada ou conflito que possa existir.

All, but Keyboard : A inicialização será interrompida por qualquer erro, menos erros relacionados com o teclado. Mesmo que o teclado não seja encontrado, o sistema inicializará normalmente. All, but disk : Apesar de inicialização poder ser interrompida por qualquer outro erro, serão ignorados erros relacionados com o drive de disquetes.

All, but disk/Key : Serão ignorados erros relacionados tanto com o drive de disquetes, quanto com o teclado.

 

BIOS Features Setup (Advanced CMOS Setup):

Virus Warning (Anti-Virus) > Esta é uma proteção rudimentar contra vírus oferecida pelo BIOS. O BIOS não tem condições de vasculhar o disco procurando por arquivos infectados, como fazem os antivírus modernos, mas ativando esta opção ele irá monitorar gravações no setor de boot do HD, também chamado de trilha MBR, onde a maioria dos vírus se instala. Caso seja detectada alguma tentativa de gravação no setor de boot, o BIOS irá interceder, interrompendo a gravação e exibindo na tela uma mensagem de alerta, perguntando se deve autorizar ou não a gravação.

O problema em ativar esta opção, é que sempre que formos alterar o setor de boot, editando as partições do disco, formatando o HD, ou mesmo instalando um novo sistema operacional, o BIOS não saberá tratar-se de um acesso legítimo ao setor de boot, e exibirá a mensagem, o que pode tornar-se irritante. Hoje em dia, considerando que quase todo mundo já mantém um antivírus instalado, esta opção acaba servindo mais para confundir usuários iniciantes ao se reinstalar o Windows, o melhor é desabilita-la, principalmente em micros de clientes.

CPU Internal cache (CPU Level 1 cache, L1 cache) > Esta opção permite habilitar ou desabilitar o cache interno do processador, ou cache L1. Claro que o recomendável é manter esta opção ativada, a menos que você queira propositadamente diminuir o desempenho da máquina, rodar algum programa de diagnóstico que recomende desabilitar a opção, ou suspeite de algum tipo de defeito.

CPU External cache (CPU Level 2 cache, L2 cache) > Aqui temos a opção de desativar o cache L2, encontrado na placa mãe ou integrado ao processador. Claro que normalmente ele deve ficar ativado, pois a falta do cache L2 causa uma perda de performance de 40% a 70%, dependendo do processador. Similarmente ao cache L1, alguns programas que testam o hardware pedem que ele seja desabilitado durante a checagem.

Algumas vezes, o cache L2 da placa mãe é danificado, fazendo com que o micro passe a apresentar travamentos. Neste caso, uma opção é desativá-lo para solucionar o problema, sacrificando a performance. Falhas no cache L2 são razoavelmente comuns em placas mãe já com bastante uso, não sendo raros também os casos onde são danificados com eletricidade estática por alguém mexendo sem cuidado no hardware do computador. No caso dos processadores atuais, onde o cache é integrado no próprio núcleo do processador, os defeitos são muito mais raros, mas ainda podem ocorrer.

CPU L2 Cache ECC Checking > Todos os processadores Intel apartir do Pentium II 350, assim como os processadores Athlon e Duron suportam este recurso, que permitem corrigir erros nos dados armazenados no cache L2. Manter esta opção ativada, num processador compatível, aumenta substancialmente a confiabilidade do micro.

Processor Number Feature > O número de identificação é um polêmico recurso encontrado no Pentium III e nos Celerons mais recentes, que consiste em incluir um número de identificação no processador. O objetivo seria possibilitar uma maior segurança nas transações online, mas o recurso causou tanta confusão que nunca chegou a ser usado para este propósito. Esta opção permite desabilitar o número, o que é recomendável para quem se preocupa com sua privacidade online.

Quick Power On Self Test (Quick Boot) > Ativando esta opção o boot do micro será realizado mais rapidamente, mas alguns erros não serão detectados.

Boot Sequence > Durante o processo de boot, o BIOS checa todos os drives disponíveis no sistema, tanto HDs quanto disquetes e até mesmo CD-ROMs. Após sondar para descobrir quais estão disponíveis, o BIOS procura o sistema operacional, passando para ele o controle do sistema. Esta opção permite escolher a seqüência na qual os drives serão checados durante o boot:

A, C : Esta é a opção mais comum. O BIOS irá checar primeiro o drive de disquete à procura de algum sistema operacional e, caso não encontre nada, procurará no disco rígido. Caso você escolha esta opção, jamais poderá deixar um disquete no drive quando for inicializar o sistema, pois, caso contrário, o BIOS tentará sempre dar o boot através dele.

C, A : O disco rígido será checado primeiro, e em seguida o drive de disquete. Selecionando esta opção, o boot demorará algumas frações de segundo a menos e você poderá esquecer disquetes dentro do drive, já que o boot será sempre dado através do disco rígido.

C only : Será checado somente o disco rígido. Quando for necessário dar um boot via disquete, será preciso entrar novamente no Setup e mudar a opção para A, C.

BIOS mais recentes também suportam boot através de um CD-ROM, o qual deverá estar obrigatoriamente ligado numa controladora IDE, pois o BIOS não tem condições de detectar um CD-ROM antigo, ligado em uma placa de som. Neste caso, além das opções de seqüência de boot anteriores, apareceriam opções como “A, C, CD-ROM” ou “CD-ROM, C, A”.

1st Boot, 2nd Boot, 3rd Boot e 4th Boot > Esta opção equivale à anterior, mas é encontrada em BIOS AMI. Basta configurar a ordem da maneira mais conveniente, escolhendo entre drive de disquetes, HD e CD-ROM.

Try other Boot Devices > Ao ser ativada esta opção, caso não seja capaz de encontrar algum sistema operacional nos drives de disquetes ou discos rígidos IDE instalados, o BIOS irá procurar também em outros dispositivos, como discos SCSI, drives LS de 120 MB, Zip drives padrão IDE ou discos removíveis que estejam instalados. O suporte a estes dispositivos, depende do nível de atualização do BIOS.

Boot UP Num Lock Status > A tecla Num Lock do teclado tem a função de alternar as funções das teclas teclado numérico, entre as funções de Home, Page Down, Page Up, End, etc., e os números de 0 a 9 e operadores matemáticos. Esta opção serve apenas para determinar se a tecla Num Lock permanecerá ativada (on) ou desativada (off) quando o micro for inicializado.

Boot UP System Speed (CPU Speed at Boot) > Esta é uma opção obsoleta, que se destina a manter compatibilidade com algumas placas de som e rede ISA, muito antigas. O melhor é escolher a opção “High” para que o Boot seja mais rápido.

IDE HDD Block Mode > Esta opção é muito importante. O Block Mode permite que os dados do HD sejam acessados em blocos, ao invés de ser acessado um setor por vez. Isto melhora muito o desempenho do HD, sendo que somente discos muito antigos não aceitam este recurso.

É altamente recomendável manter esta opção ativada, caso contrário, o desempenho do HD poderá cair em até 20%. Em alguns BIOS esta opção está na sessão “Integrated Peripherals”, mas todos os BIOS razoavelmente modernos possuem suporte ao Block Mode. Caso esta opção não exista no Setup da sua placa mãe, provavelmente estará ativada por defaut. Em alguns casos, você poderá configurar esta opção com vários valores diferentes, sendo recomendado o valor “optimal” ou “HDD Max”.

Uma pequena advertência, é que segundo a Microsoft, o Windows NT 3.x e NT 4 possuem um bug, que pode apresentar corrupção de dados em alguns casos, estando esta opção habilitada. No caso do Windows NT 4 o problema foi corrigido apartir do Service Pack 2. Este problema existe apenas no Windows NT, não em outras versões do Windows.

32-bit Disk Access > Mantendo esta opção ativada, as transferências de dados do HD para o processador ou memória serão feitas utilizando palavras de 32 bits. Desabilitando a opção as transferências serão feitas a 16 bits. Como o barramento PCI opera a 32 bits, manter esta opção ativada irá melhorar um pouco o desempenho geral do sistema.

Security Option (Password Check) > Você deve ter visto, na tela principal do Setup, uma opção para estabelecer uma senha. Aqui podemos escolher entre as opções “Setup” e “Always” (que às vezes aparece como “System”). Escolhendo a opção Setup, a senha será solicitada somente para alterar as configurações do Setup. Escolhendo a opção Always, a senha será solicitada toda a vez que o micro for ligado. A senha do Setup é um recurso útil, pois nos permite restringir o uso do micro ou simplesmente barrar os “fuçadores de Setup”.

PS/2 Mouse Function Control > Todas as placas atuais trazem ao lado do conector do teclado, uma porta PS/2, que pode ser usada para a conexão de um mouse. Caso você esteja usando um mouse serial, pode desabilitar a porta PS/2 através desta opção, liberando o IRQ 12 usado por ela, que ficará livre para a instalação de outros dispositivos.

USB Function > Caso você não esteja utilizando as portas USB da placa mãe, pode desativa-las através desta opção. Isto deixará livre o IRQ 8, utilizado por elas. Quanto mais IRQs livres você tiver no sistema, menor será a possibilidade de surgirem conflitos de hardware.

HDD Sequence SCSI / IDE First > Muitas vezes, temos instalados HDs IDE e SCSI no mesmo micro. Tipicamente nestes casos, o BIOS dará o boot sempre usando o HD IDE, fazendo-o través do HD SCSI apenas se não houver outro HD padrão IDE instalado. Esta opção, presente na maioria dos BIOS mais recentes, permite justamente inverter esta ordem, tentando o boot primeiramente através do primeiro HD SCSI instalado, fazendo-o através do disco IDE apenas se não houver nenhum disco SCSI disponível.

BIOS Update (Flash BIOS Protection) > Todos os BIOS de placas modernas, são armazenados em chips de memória Flash, o que permite sua atualização via software, a qual recebe o nome de upgrade de BIOS. Este recurso permite ao fabricante da placa mãe lançar upgrades para corrigir bugs encontrados no BIOS de algum modelo de placa mãe, ou mesmo acrescentar novos recursos ou aumentar a compatibilidade do BIOS. Muitas vezes, você precisará atualizar o BIOS da sua placa mãe a fim de ativar o suporte a um processador recentemente lançado, por exemplo.

O problema, é que existem vírus como o Chernobil, capazes de alterar o BIOS com propósitos destrutivos. Estes vírus são especialmente perigosos, pois além de causar perda de arquivos, são capazes de causar um dano físico ao equipamento, já que danificando o BIOS a placa mãe é inutilizada. Para barrar a ação destes vírus, a grande maioria das placas mãe permitem desabilitar o recurso de regravação do BIOS.

Em algumas placas, isto é feito alterando um certo jumper na placa mãe, e em outras, mais modernas, isto é feito através desta opção do Setup. Esta opção permite escolher entre ativado (para permitir a regravação do BIOS) e desativado (para barrar qualquer tentativa de alteração). Por medida de segurança, é recomendável manter desabilitada esta opção, habilitando-a apenas quando você for fazer um upgrade de BIOS.

CPU Internal Core Speed (Processor Speed ou CPU speed) > Em quase todas as placas mãe atuais a configuração da velocidade do barramento e do multiplicador é feita através do Setup. Em placas mãe mais recentes, a identificação da voltagem e da velocidade do processador é feita automaticamente, pois estes dados são fornecidos pelo próprio processador.

Esta opção se relaciona com o multiplicador de clock do processador. Apesar da velocidade deste ser detectada automaticamente, muitos BIOS nos dão a opção de aumentar ou diminuir este valor caso o usuário deseje. Esta opção só tem alguma utilidade coso você esteja usando um processador AMD K6-2 ou então um Athlon ou Duron destravado. Todos os processadores Intel atuais possuem o multiplicador travado, ignorando o valor configurado nesta opção.

CPU External Speed (Bus Clock) > Esta opção configura a freqüência de operação da placa mãe. É encontrada na grande maioria das placas atuais, e é justamente a opção que permite fazer overclock. Comece verificando quais freqüências a placa mãe permite. Se você estiver usando um Pentium III, que usa bus de 100 MHz, é provável que ele funcione bem com bus de 112 MHz, caso esteja usando um Celeron, que usa bus de 66 MHz, poderá usar 75 MHz, ou até mesmo 100 Mhz em algumas versões.

Algumas placas mãe só oferecem as opções de 66 e 100 MHz, neste caso não existe muito o que fazer.

Turbo Frequency > Encontrada apenas em algumas placas, esta opção permite aumentar o clock da placa mãe em 2,5% ou 3% (varia de acordo com o modelo da placa). Caso você tenha configurado seu processador para operar a 3x 100 por exemplo, ativando esta opção ele passará a operar a 307 MHz (3x 102,5 MHz). Apesar de geralmente o sistema funcionar bem com esta opção habilitada, em alguns casos pode haver alguma instabilidade. Poderíamos classificar esta opção como uma espécie de overclock leve.

PCI clock > Em algumas placas mãe que suportam várias freqüências de barramento, como as Abit BX6 e BH6, que suportam freqüências de até 143 MHz, é comum podermos alterar a freqüência de operação do barramento PCI, entre 1/2 da freqüência da placa mãe, 1/3 da freqüência, ou 1/4 da freqüência.

Usando bus de 133 MHz, por exemplo, o ideal seria configurar o PCI para operar a 1/4 da freqüência da placa mãe, mantendo os 33 MHz padrão. A 100 MHz o ideal é que o PCI funcione a 1/3 do clock da placa mãe e a 66 MHz o ideal é 1/2.

Configurar esta opção erradamente, fazendo com que o PCI opere acima dos 33 MHz normais pode tornar o sistema instável, entretanto não existe perigo de danificar nenhum periférico.

AGP CLK/CPU CLK > Podemos agora configurar a freqüência de operação do barramento AGP, em relação à freqüência da placa mãe.. Geralmente estão disponíveis as opções 1/1 e 2/3. Como a freqüência padrão do barramento AGP é de 66 MHz, usando bus de 66 MHz a opção correta seria 1/1, sendo 2/3 caso esteja sendo utilizado bus de 100 MHz. Utilizando bus de 133 MHz por sua vez, a opção ideal é 1/2, que novamente resultaria nos 66 MHz padrão.

Como no caso anterior, o sistema pode tornar-se instável caso o AGP esteja operando acima dos 66 MHz ideais. Se ficará instável ou não vai depender do modelo de placas de vídeo que tiver instalado.

CPU Power Supply (Core Voltage) > Em algumas placas mãe, especialmente placas Abit, é possível alterar a voltagem do processador livremente. Apesar dos processadores Pentium II ou posteriores serem capazes de informar à placa mãe a voltagem correta, pode ser necessário aumentar um pouco a voltagem para conseguir sucesso em um overclock mais agressivo. Obviamente, isto deve ser feito com extrema cautela, pois uma voltagem muito alta pode danificar o processador depois de pouco tempo de funcionamento.

System BIOS Shadow, Video Bios Shadow > Ativando estas opções, será feita uma cópia do Bios principal e do Bios da placa de vídeo na memória RAM. Na época do DOS, esta opção servia para melhorar um pouco o desempenho do sistema, pois o acesso ao Bios é mais rápido apartir da memória RAM do que apartir do chip de onde ele fica originalmente armazenado.

Atualmente esta opção já não tem mais efeito, pois tanto no Windows 95/98/NT/2000, quanto no Linux, o acesso ao hardware é feito através de drivers de dispositivos, e não através das sub-rotinas do Bios. Neste caso, a ativação do Bios Shadow não causa nenhuma melhoria na performance.

 

Chipset Features Setup (Advanced Chipset Setup):

É possível configurar opções relacionadas com o desempenho do sistema, como o acesso à memória RAM e cache, entre outras opções importantes.

Auto Configuration > Esta opção nos oferece o recurso de configurar a maioria das opções do Chipset Features Setup com valores default. Estas opções relacionadas basicamente com o tempo de acesso das memórias e cache, serão então preenchidas com valores default, visando garantir um maior grau de confiabilidade do sistema, porém, sempre comprometendo um pouco da performance.

Cache Timing (Cache Read Cycle) > Aqui podemos configurar a velocidade de operação do cache L2. Os valores desta opção aparecem geralmente na forma de seqüências de 4 números, como 3-2-2-2 ou 2-1-1-1. Note que esta opção refere-se à freqüência de operação do cache da placa mãe, e por isso é encontrada apenas em placas mãe soquete 7.

Se você deseja o máximo de confiabilidade do seu sistema, então você deve configurar esta opção com valores médios, ou habilitar a auto configuração. Entretanto, se deseja obter maior desempenho, então pode tentar valores mais agressivos. Usando uma placa mãe de qualidade pelo menos razoável, mesmo os valores mais baixos devem funcionar sem problemas, a menos que você esteja fazendo overclock.

SDRAM Configuration > Encontrada em algumas placas mais recentes, esta opção permite especificar a velocidade de operação das memórias SDRAM instaladas no PC. Podemos escolher entre vários valores, geralmente de 15 ns a até 8 ou 7 ns. Configurar esta opção com uma velocidade inferior à velocidade das memórias instaladas provavelmente causará instabilidade, enquanto um valor superior à velocidade real diminuirá a velocidade de acesso às memórias. Esta opção só se aplica caso tenhamos memórias SDRAM instaladas no computador.

SDRAM CAS Latency > Apartir das memórias FPM, usamos o modo de acesso rápido ao dados gravados nas memórias, que consiste em estabelecer o valor RAS (linha) uma vez, e em seguida enviar vários endereços CAS (coluna) em seqüência.

Esta opção permite configurar o intervalo entre o envio dos sinais CAS. Geralmente estão disponíveis as opções “3” e “2”. Apesar do valor 2 resultar em um pequeno ganho de performance, você deve configurar esta opção de acordo com a especificação de seus módulos. Na dúvida, escolha o valor 3, pois apesar do pequeno ganho de desempenho, o uso de CAS 2 em memórias que não o suportam irá causar instabilidade.

Geralmente, para conseguir que memórias PC-100 funcionem acima de 100 MHz, com bus de 112 ou 124 MHz, ou que memórias PC-133 trabalhem com bus de 150 MHz é preciso escolher o valor 3, mesmo que a especificação da memória seja 2. A configuração correta desta opção é essencial para quem deseja fazer overclock.

SDRAM Cycle Time Tras/Trc > Nesta opção pode ser configurado o tempo que cada página de memória permanecerá ativa para a transmissão de dados (Tras) e o tempo que o controlador de memória aguardará antes de acessar novamente cada página de memória.

Geralmente estão disponíveis as opções “5/6” e “6/8”. A primeira opção, 5/6 resultará num pequeno ganho de desempenho, porém poderá causar instabilidade caso você esteja fazendo overclock. A opção “6/8” por sua vez assegura uma maior tolerância dos módulos a freqüências acima da especificação, apesar de mais lenta.

SDRAM Ras to CAS Delay, SDRAM Cycle Length > São mais duas opções desempenho x estabilidade que estão disponíveis em algumas placas. Escolhendo o valor 3 o acesso à memória será mais lento, porém a tolerância dos módulos será maior, o que garantirá melhores possibilidades de overclock. Escolher 2 significa algum ganho de desempenho.

SDRAM Leadoff Command > Esta opção permite configurar o tempo que o controlador de memória aguardará antes de ler um dado recentemente gravado. Estão disponíveis os valores 3 e 4. Escolha 3 para um melhor desempenho ou 4 para estabilidade ou overclock

SDRAM Bank Interleave > Esta opção não em a ver com a estabilidade, mas sendo corretamente configurada permite melhorar um pouco o acesso à memória RAM.

A moral da história é a seguinte, existem dois tipos de módulos de memória DIMM SDRAM, módulos de 2 bancos e módulos de 4 bancos. O processador pode acessar dados apartir dos vários bancos em seqüência, melhorando o desempenho.

Os módulos de 2 bancos são os módulos de menor capacidade, geralmente 16 ou 32 MB que usando chips de 16 Mbits. Os módulos de 4 bancos por sua vez são os módulos mais atuais, de 32 MB ou mais, que utilizam chis de 64 Mbits. Para saber se seus módulos são de 2 ou 4 bancos, basta fazer as contas: divida a capacidade do módulo pela quantidade de chips e multiplique por 8, assim você terá a capacidade de cada chip em bits. Como disse, chips de 16 Mbits possuem 2 bancos, enquanto chips de 64 Mbits possuem 4 bancos.

Por exemplo, num módulo de memória de 32 MB, composto por 16 chips, cada chip possui 2 MB, que equivalem a 16 Mbits.

Caso você esteja usando módulos de 2 bancos, configure esta opção com o valor “2-Bank”. Caso você esteja utilizando módulos de 4 bancos configure com o valor “4-Bank”.

AGP Aperture Size > O barramento AGP permite que uma placa de vídeo utilize a memória RAM principal para armazenar texturas. Esta opção permite configurar o valor máximo de memória que a placa poderá ocupar, evitando que ela se aproprie de toda a RAM disponível, não deixando espaço para os programas que estiverem abertos. Aqui você encontrará opções que vão de 4 MB a 256 MB, sendo recomendável escolher um valor correspondente à metade da memória RAM instalada no sistema. Caso o valor não seja suficiente, começarão a aparecer polígonos em branco durante a execução de jogos programas que utilizem a placa 3D, justamente por que não houve espaço na memória para armazenar a textura correspondente a eles. Neste caso, basta aumentar um pouco o valor máximo.

Esta opção não é tão importante quanto parece, pois, em geral, as placas de vídeo 3D, especialmente as mais recentes, nunca chegam a utilizar uma grande quantidade de memória RAM para armazenar texturas, pois o uso deste recurso degrada bastante o desempenho da placa. Na grande maioria dos casos, a placa de vídeo não chega a usar mais de 8 MB de memória local para texturas.

System Bios Cacheable / Video Bios Cacheable > Ativando estas opções, além de copiar o conteúdo do Bios principal e do Bios da placa de vídeo para a memória RAM, será usada a memória cache para agilizar ainda mais os acessos. Dentro do MS-DOS existe um pequeno ganho de performance, mas dentro do Windows não existe ganho algum, pelo contrário, há uma pequena diminuição do desempenho, pois uma pequena quantidade do precioso cache L2 será desperdiçada. O melhor atualmente é desabilitar estas opções.

8 Bit I/O Recovery Time > O processador é capaz de realizar transferências de dados a cada pulso de clock.. Periféricos PCI e discos IDE também são capazes de realizar uma operação por ciclo de seus respectivos barramentos. O problema é que algumas placas ISA de 8 bits muito antigas, mesmo usando este já lento barramento, precisam de pequenas pausas entre uma transferência e outra para funcionar corretamente. Esta opção permite definirmos em ciclos de clock o tempo reservado a esta pausa.

Geralmente, podemos escolher um valor entre 0 (recurso desativado) e 8. Apesar de serem raros os periféricos ISA que precisam deste recurso, por precaução é recomendável configurar esta opção com o valor 4 ou manter o valor default. Também é recomendável o valor 4 caso você esteja fazendo overclock. Isto não atrapalhará o desempenho, pois mesmo com os tempos de espera, o barramento de dados continuará sendo mais que suficiente para estes periféricos antigos.

16 Bit I/O Recovery Time > Esta opção é idêntica à anterior, aplicando-se desta vez às placas ISA de 16 bits. É seguro configurar esta opção com o valor 0, pois por serem mais modernas, placas ISA de 16 bits dificilmente precisam do intervalo. Caso você esteja fazendo overclock, é prudente usar o valor 2.

Passive Release > Esta opção permite que o chipset acesse o barramento PCI ao mesmo tempo que as placas ISA (caso exista alguma) estejam transferindo dados. Ativar esta opção resultará em um pequeno ganho de desempenho, mas poderá causar problemas em conjunto com algumas placas ISA antigas.

Delayed Transaction > É mais uma opção ligada ao barramento PCI. Permite ativar um pequeno buffer de dados presente no chipset que armazenará as transferências de dados dos periféricos ISA, transmitindo uma grande quantidade de dados de cada vez. Com isto melhora-se o desempenho geral. Novamente, esta opção não irá funcionar com algumas placas ISA antigas.

AGP 2X mode > Esta opção é encontrada apenas em algumas placas antigas. Escolhendo “enabled” o AGP operará no modo 2X, caso contrário será usado o modo 1X. Em algumas placas escolher 2X pode causar instabilidade.

AGP 4X mode > Similarmente à opção anterior, algumas placas mãe permitem desabilitar o AGP 4X, fazendo com que o AGP opere em modo 2X. Algumas placas de vídeo antigas podem funcionar adequadamente apenas caso esta opção esteja desabilitada. Algumas placas mãe podem apresentar instabilidade com o modo 4X habilitado.

 

PCI/Plug and Play Setup:

O Plug and Play é um método que facilita bastante a configuração do sistema, assim como a instalação de novos periféricos, pois permite ao BIOS e ao sistema operacional atribuírem automaticamente endereços de IRQ e, quando necessário, canais de DMA, sem intervenção do usuário. Quase todos os periféricos padrão PCI são Plug and Play, justamente devido ao barramento PCI ser totalmente compatível com este padrão. Mesmo muitas placas de expansão padrão ISA incorporam recursos Plug and Play.

De qualquer maneira, sempre é possível atribuir endereços manualmente para solucionar conflitos causados por uma placa mais “brigona”. Vamos então às configurações:

Plug and Play Aware OS (Boot With PnP OS) > Aqui, devemos informar se o sistema operacional que estamos rodando no micro é ou não compatível com o PnP. Caso seja, o BIOS permitirá que o próprio sistema operacional configure os endereços utilizados pelos periféricos, caso contrário, o próprio BIOS cuidará desta tarefa.

É importante manter esta opção ativada caso você esteja utilizando o Windows 2000, caso contrário poderão ocorrer problemas na detecção de alguns periféricos ISA, especialmente modems. É muito comum em micros com o Windows 2000 o modem simplesmente não funcionar enquanto esta opção permanecer desativada. Entretanto, caso você esteja utilizando apenas placas PCI, a Microsoft recomenda manter esta opção desativada, pois segundo eles a ativação pode causar problemas na detecção de alguns periféricos.

No caso Windows 98 novamente a recomendação da Microsoft é manter a opção desativada, pois podem ocorrer problemas com o gerenciamento de energia do Win 98, o que poderá causar o famoso problema do micro travar ao desligar.

Force Update ESCD > O ESCD (Extended System Configuration Data) é uma pequena parcela da memória do CMOS, destinada a armazenar informações sobre a configuração atual dos recursos de IRQ, DMA, endereços de I/O, etc.

Toda vez que o BIOS ou o sistema operacional, altera a configuração dos endereços, altera também o ESCD. Por outro lado, sempre que o sistema é inicializado, primeiro o BIOS e depois o sistema operacional lêem o ESCD, operando de acordo com seus valores.

Ativando esta opção, o ESCD será apagado, forçando uma nova atribuição de endereços a todos os periféricos Plug-and-Play, tanto por parte do Bios quanto do sistema operacional, o que muitas vezes é suficiente para solucionar muitos conflitos. Após o ESCD ser apagado, esta opção voltará automaticamente para o valor disabled.

Resources Controlled by > Aqui podemos definir de que modo será feita a configuração dos endereços de IRQ e DMA. Geralmente estão disponíveis as opções Manual e Auto:

Auto : Selecionando esta opção, o BIOS atribuirá automaticamente as definições de IRQ e DMA para todos os dispositivos. Esta opção é recomendada, já que funciona na grande maioria das vezes sem problemas

Manual : Caso você esteja enfrentando algum conflito entre periféricos utilizando a opção de auto configuração, ou simplesmente gosta de desafios, poderá selecionar a opção “manual” e configurar os endereços manualmente. Neste caso, surgirão várias opções a serem configuradas:

IRQ 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 11 / 12 / 13 / 14 / 15 > Aqui temos a opção de reservar canais de IRQ para o uso de placas que não sejam PnP. Geralmente, você poderá escolher entre as opções “PnP/PCI” (dependendo do Bios o valor é “No/ICU”) e “ISA” (que algumas vezes aparece como “Legacy ISA”).

Na maioria dos casos, a configuração da interrupção a ser usada por cada dispositivo é automaticamente configurada pelo BIOS, mas no caso de instalarmos uma placa ISA não-PnP, do tipo onde configuramos os endereços de IRQ e DMA a serem utilizados pela placa via jumpers, muito provavelmente o BIOS não será capaz de reconhecer os endereços ocupados por ela, destinando-os a outras placas e gerando conflitos de hardware.

Por exemplo, caso você pretenda instalar uma placa de som ISA não-PnP configurada para utilizar o IRQ 5, deverá reservá-lo aqui, selecionando para ele a opção “ISA”. Quase sempre os valores default do BIOS para estas opções funcionam, sendo raros os casos em que é necessário alterá-los

DMA Chanel 0 / 1 / 3 / 5 / 6 / 7 > Da mesma forma que acontece com as interrupções, precisamos às vezes reservar canais de DMA para o uso de dispositivos que não sejam PnP. Caso, por exemplo, a placa de som do exemplo anterior utilize os canais de DMA 1 e 5, devemos configurar as opções correspondentes a eles com o valor “ISA”.

Assign IRQ for VGA Card (Allocate IRQ to PCI VGA) > Esta opção permite reservar um endereço de IRQ para uso da placa de vídeo. A maioria das placas aceleradoras 3D, ou seja, praticamente qualquer placa de vídeo razoavelmente atual, só funciona adequadamente se esta opção estiver ativada. Porém, a maioria das placas de vídeo 2D antigas não precisam desta interrupção. Neste caso, poderíamos mantê-la desativada para livrar um IRQ. Se esta opção não estiver disponível no Setup de seu micro, é por que está ativada por default ou por que o BIOS é capaz de detectar automaticamente se a placa de vídeo instalada precisa ou não de um canal exclusivo.

PCI IRQ Activated By > Com certeza você já deve ter ouvido dizer que em alguns casos duas ou mais placas PCI podem compartilhar o mesmo endereço de IRQ, mas caso esteja em dúvida sobre o por que disco acontecer em alguns micros e em outros não, esta opção pode ser a resposta.

Apesar de desde as suas primeiras versões o barramento PCI permitir o compartilhamento de IRQs, os primeiros periféricos PCI não eram compatíveis com, o recurso. Por outro lado, quase todos os periféricos PCI atuais o são.

Esta opção possui duas alternativas, “Edge” e “Level”. Caso você esteja configurando o Setup de um micro antigo, montado a 2 ou 3 anos, então o recomendável é manter a opção em Edge, pois provavelmente o PC terá placas PCI incompatíveis com o recurso. Edge desativa o compartilhamento de IRQs, o que irá evitar problemas.

Porém, caso você esteja configurando um PC atual escolha a opção Level, que habilita o compartilhamento de IRQs.

 

Power Management Setup:

Estão concentradas as opções relacionadas com os modos de economia de energia. Uma boa parte das opções podem ser configuradas dentro do Windows, mas outras estão disponíveis apenas aqui.

Power Management > Aqui podemos habilitar ou desabilitar o funcionamento do Power Management. Geralmente você encontrará disponíveis as seguintes opções:

Disabled: Todos os recursos de economia de energia ficarão desativados.

Min Saving: O Power Management ficará ativado, porém entrará em atividade apenas após 45 ou 60 minutos (dependendo do BIOS) de inatividade do micro, provendo pouca economia.

Max Saving: Economia máxima de energia, os componentes do micro começarão a ser desligados após poucos minutos de inatividade

User Defined: Esta é a opção mais recomendada. Assim, nem 8 nem 80, poderemos personalizar todas as configurações a nosso gosto.

Escolhendo a opção user defined, surgirá a possibilidade de configurar uma série de opções, que veremos a seguir:

PM Control by APM > O APM, ou Advanced Power Management, é um padrão de gerenciamento de energia criado pela Microsoft, que além de ser totalmente compatível com o Windows 95/98/NT/2000, é mais eficiente que a maioria dos padrões anteriores.

Esta opção ativa ou não o APM, sendo recomendável mantê-la ativada para um gerenciamento mais eficiente.

Doze Mode/Standby Mode Timeout/Suspend Mode > Existem três níveis de economia de energia, que vão do Doze ao Suspend, passando pelo Standby. A diferença entre os três é a quantidade de componentes que serão desligados e, consequentemente, o quanto de energia elétrica será economizada.

Esta opção define depois de quanto tempo de inatividade o sistema passará respectivamente para o Doze Mode, Standby mode e Suspend Mode. No doze mode são desligados o HD e o monitor, no standby mode é desligado também a maior parte do processador principal, resultando numa economia maior de energia, mas uma demora maior quando quiser que o sistema volte. Finalmente, no standby mode quase tudo é desligado, incluindo a placa de vídeo, som, etc. a economia de emergia é máxima.

HDD Power Down Timeout > O HD é um componente que pode ter sua vida útil bastante abreviada por uma configuração inadequada do Power Management. No disco rígido, o motor principal gira continuamente, mesmo quando não existe nenhum dado a ser lido ou gravado. Quando o HD entra em modo de baixo consumo de energia, o motor principal é desligado, justamente para economizar o máximo possível de energia. Este liga-desliga do motor principal, causa um desgaste prematuro do equipamento, levando-o a apresentar defeitos bem antes do normal. Como o HD consome cerca de apenas 10 watts, e é o componente mais crítico do sistema, já que armazena todos os seus dados importantes, acaba não valendo à pena ativar esta opção, salvo em casos onde o micro permanece várias horas corridas sem atividade.

Video Power Down Timeout > Sem dúvida, o componente que mais vale à pena ser colocado em modo de economia de energia é o monitor, já que ele consome cerca de 100 Watts, quase metade do consumo total do computador.

Mas, como no caso do HD, é preciso uma certa cautela na configuração do modo de economia do monitor, pois ser ligado e desligado muitas vezes pode abreviar sua vida útil, o mesmo caso de uma televisão, por exemplo. O recomendável é que o monitor seja desligado apenas quando o micro for ficar muito tempo sem atividade. Aqui podemos escolher, em minutos, o tempo de inatividade do sistema antes do monitor entrar em modo de economia de energia.

Power Supply Type > Algumas placas mãe podem funcionar tanto em gabinetes equipados com fontes AT, quanto com fontes padrão ATX, possuindo os dois conectores. Neste caso, encontraremos no Setup esta opção, onde devemos informar qual tipo de fonte está sendo utilizando.

Instant On Support > O recurso Instant On é suportado por algumas placas mãe. Através dele, quando vamos em iniciar/desligar dentro do Windows, ou mesmo pressionamos diretamente o botão liga-desliga, o micro não é desligado, entrando apenas em modo standby. Quando pressionarmos novamente o botão liga-desliga o micro voltará à atividade, sem a necessidade de um novo boot.

Power Button Function (Power Button Override) > No caso do BIOS ser compatível com o Instant On, e termos ativado a opção anterior, temos aqui a opção de configurar a função do botão liga-desliga do gabinete. Assim, o micro pode ser realmente desligado quando o pressionamos, ou pode entrar apenas em modo suspend, voltando à atividade quando pressionado novamente.

Eu pessoalmente acho um pouco arriscado usar o recurso de Instant On em terras Tupiniquins, pois o sistema elétrico instável encontrado na maioria dos estados, que gera picos de tensão e outros problemas, tornam um perigo manter um computador 24 horas ligado. Claro que isto não se aplica a você caso esteja usando um no-break e fio-terra.

CPU Overheat Warning Temperature > Muitas placas mãe possuem sensores que, entre outras funções, monitoram a temperatura do processador. Geralmente nestas placas, encontramos no Setup esta opção, que permite especificar a temperatura a partir da qual o BIOS considerará como aquecimento excessivo.

Geralmente, os processadores podem funcionar em temperaturas de até 70ºC (este é um valor médio que pode variar de acordo com o modelo), acima disso, podem começar a haver travamentos ou mesmo danos. Por cautela, uma temperatura adequada de funcionamento é de no máximo 50 ou 55º C.

Caso o processador atinja a temperatura limite configurada aqui, a placa mãe começará a emitir um aviso sonoro intermitente, que apesar de dar o alerta, pode tornar-se muito chato.

CPU Overheat Clock Down > Sendo atingida a temperatura limite configurada na opção anterior, o BIOS oferece como solução, diminuir momentaneamente a velocidade de operação do processador, até que a temperatura volte a níveis seguros. Aqui podemos escolher entre porcentagens do clock original, 12,5%, 25%, 37,5%, 50%, 62,5%, 75% ou 87,5%. Também é possível desabilitar esta opção.

CPU Current Temperature > Caso sua placa mãe seja equipada com os sensores de temperatura, muito provavelmente esta opção estará disponível. Aqui será informada a temperatura atual do processador. Para ter uma medição mais precisa, verifique a temperatura depois de utilizar o micro durante algumas horas.

MB Temperature > Aqui é informada a temperatura atual da placa mãe. Apesar dos chips encontrados na motherboard não apresentarem um aquecimento tão acentuado quanto o processador, pode ser interessante acompanhar sua temperatura.

CPU Fan Speed > Mais um recurso oferecido pelas placas mãe mais modernas, esta opção permite monitorar as rotações do cooler (ou fan) do processador, informando a sua velocidade de rotação em RPMs. Um cooler razoável deve apresentar rotação de pelo menos 4000 RPMs, enquanto outros de melhor qualidade podem ultrapassar os 6.000 RPMs. Quanto maior a velocidade de rotação do cooler, melhor será o resfriamento do processador. Caso perceba uma rotação muito baixa, é recomendável trocar seu cooler por um melhor.

Voltage monitor > Uma fonte AT alimenta a placa mãe com voltagens de 5 e 12 volts. Uma fonte ATX já oferece também 3.3v. Muitas das placas mãe mais recentes possuem um chip adicional, responsável por monitorar a alimentação oferecida pela fonte.

É perfeitamente normal que ocorram pequenas variações, como 3.4 ou 3.5v ao invés de 3.3v, ou 12.4v ao invés de 12V. Grandes variações, porém, são sinal de defeitos na fonte de alimentação, ou de uma rede elétrica precária, e podem causar mau funcionamento ou mesmo danos ao equipamento. É recomendável, então, a substituição da fonte, caso seja ela a culpada ou investir em um no-break e fio terra, caso seja a rede elétrica que esteja com problemas.

Atualmente, é possível comprar um no-break simples por menos de 200 reais e, considerando a proteção e segurança que ele oferece, é um bom negócio sem dúvida. Instalar o fio terra também é bastante simples. Compre uma barra de cobre em alguma casa de materiais elétricos, faça um buraco de uns 10 cm de largura no quintal, ou em algum lugar onde tenha terra, encha com sal, jogue água e em seguida crave a barra de cobre. Puxe um fio até o neutro da tomada tripolar onde será ligado o no-break e vualá. Você pode testar se o fio terra está bem instalado usando um lâmpada de 100 Watts comum: ligue o positivo da lâmpada na tomada e o negativo no fio do terra. Se a lâmpada acender então o terra está bem instalado.

 

Integrated Peripherals (Features Setup):

Para ativar ou desativas vários dos periféricos da placa mãe, como por exemplo as portas IDE, seriais, paralelas, etc. Em muitas placas é possível desativar também o vídeo, som, modem ou rede onboard.

Onboard IDE (On Chip PCI IDE) > Como já vimos, todas as placas mãe modernas possuem duas portas IDE embutidas, que chamamos de IDE primária e IDE secundária.

Como todo dispositivo, estas portas usam canais de IRQ. Assim, caso utilizemos apenas a IDE primária, ou mesmo uma controladora SCSI, poderia ser interessante desabilitar a segunda ou ambas as interfaces IDE (no caso de usar apenas periféricos SCSI), a fim de manter livres seus canais de IRQ para a instalação de outros dispositivos. Para isto, basta configurar adequadamente esta opção:

Both : Ambas as interfaces IDE ficarão ativadas.

Primary : Apenas a IDE primária ficará ativada

Secondary : Apenas a IDE secundária ficará ativada

Disabled : Ambas as interfaces IDE serão desabilitadas. Neste caso, ficaremos com os IRQs 14 (usado pela IDE primária) e 15 (utilizado pela IDE secundária) livres para uso de outros dispositivos.

IDE Primary Master Mode, IDE Secondary Master Mode, IDE Primary Slave Mode, IDE Secundary Slave Mode > As interfaces IDE são capazes de realizar transferências de dados em vários modos, que vão desde o lento e antigo Pio mode 0 (3,3 MB/s) até o UDMA 66 utilizado pelos HDs mais recentes. Devemos informar aqui qual é o modo de transferência de dados utilizado pelos discos rígidos ou CD-ROMs instalados em cada interface IDE do sistema. A maioria dos HDs de até 2 anos atrás, trabalham usando o Pio mode 4, enquanto os mais recentes utilizam o UDMA 33 ou mesmo UDMA 66. A maioria dos drives de CD-ROM utilizam o Pio mode 3, apesar dos modelos mais novos estarem suportando o Pio 4, ou mesmo o UDMA 33.

Caso tenha dúvida sobre o utilizado pelo seu disco, basta selecionar a opção “auto” para que o BIOS detecte automaticamente o modo utilizado pelo dispositivo.

Ultra DMA-66/100 IDE Controller > Algumas placas mãe trazem um controlador IDE extra. Estas placas vem com 4 portas IDE. Duas são as portas normais encontradas em qualquer placa mãe, enquanto as adicionais são portas UDMA 66 ou UDMA 100. Esta opção permite desabilitar as duas portas extras. Naturalmente só teria alguma utilidade caso por qualquer motivo você não pretenda usa-las.

On Board FDC > Além de duas interfaces IDE, as placas mãe incluem também uma controladora de drives de disquetes que pode ser desativada através desta opção. Geralmente esta interface só é desabilitada quando o computador não possui drive de disquetes, ou quando instalamos uma placa Super-IDE e desejamos desabilitar a interface de disquetes da placa mãe para utilizar a interface da placa externa.

On Board Serial Port 1 e On Board Serial Port 2 > Esta opção permite desabilitar ou especificar um endereço diferente para as portas seriais do micro. Temos duas portas seriais: a porta serial 1 geralmente é utilizada pelo mouse, enquanto a segunda pode ser utilizada para a ligação de dois computadores via cabo serial, instalação de um modem externo, ou de qualquer outro dispositivo que use uma porta serial.

Por default, a porta serial 1 (On Board Serial Port 1) geralmente utilizada pelo mouse, usa a COM 1 e o endereço de I/O 3F8. Caso você instale algum periférico que vá utilizar esta porta (um modem configurado para utilizar a COM 1, por exemplo) poderá mudar a porta utilizada pelo mouse para evitar conflitos. Em outros casos, você poderá desabilitar a segunda porta serial, para manter livres os endereços usados por ela.

Serial Port 1 IRQ e Serial Port 2 IRQ > Aqui podemos escolher o canal de IRQ que será utilizado pelas interfaces seriais instaladas no micro. O mais comum é configurarmos a Porta Serial 1, para usar o IRQ 4, e a porta serial 2, para usar a IRQ 3, mas, em alguns casos, pode ser preciso escolher outras interrupções para solucionar conflitos.

On Board Parallel Port > Esta nada mais é do que a porta paralela usada pela impressora. Aqui temos a opção de desabilitá-la. Claro que normalmente não faríamos isso, pois nossa impressora, assim como outros periféricos que usam a porta paralela, parariam de funcionar. Porém, em micros que não possuem impressora, desabilitar a porta paralela pode ser uma boa opção para conseguir mais um IRQ livre.

Parallel Port Address > Aqui podemos escolher o endereço de I/O (input/output, ou entrada e saída) usado pela porta paralela. Podemos escolher aqui entre três endereços: 378, 278 e 3BC. Caso você tenha apenas uma porta paralela instalada no micro, poderá escolher livremente qualquer um destes endereços. Caso esteja usando uma segunda porta paralela instalada em um Slot ISA ou PCI, cada uma deverá usar um endereço próprio. Podemos ter até 3 portas paralelas instaladas no micro.

Você pode adquirir novas portas paralelas na forma de placas de expansão ISA. VLB ou PCI, encontradas com um pouco de dificuldade em lojas especializadas ou sucatões de informática. Outra opção é comprar uma placa Super-IDE e configurar os jumpers da placa para que as portas seriais, para joystick e interfaces de disco sejam desabilitadas, permanecendo ativada apenas a porta paralela.

Parallel Port IRQ > Como todo dispositivo, a porta paralela também utiliza uma interrupção de IRQ. Geralmente, temos a opção de configurar a porta para utilizar o IRQ 5 ou 7, sendo a última mais recomendável, já que geralmente o IRQ 5 é utilizado pela placa de som. Alguns BIOS permitem também o uso de outros endereços.

On Board Parallel Port Mode (On Board Printer Mode) > As portas paralelas encontradas nas placas mãe modernas, podem trabalhar em diferentes modos de operação. Aqui podemos justamente selecionar qual modo a porta paralela deverá utilizar. Geralmente estão disponíveis as opções Normal, Bidirecional, ECP e EPP.

Os modos Normal e Bidirecional são bem mais lentos. A diferença entre eles é que o modo Bidirecional permite comunicação bidirecional. O modo ECP é mais rápido, sendo usado por impressoras um pouco mais modernas, além de ser compatível com a maioria dos Scanners, Zip Drives e outros dispositivos que utilizam a porta paralela. Temos também o EPP, com velocidade semelhante ao ECP, porém com menos recursos.

Geralmente, configuramos a porta paralela com ECP, pois este traz várias vantagens sobre os outros modos, como o uso de um canal de DMA, que diminui a taxa de ocupação do processador durante as transferencias de dados. Pode ser, porém, que uma impressora ou outro periférico mais antigo só funcione adequadamente em uma porta bidirecional. Neste caso, basta voltar aqui e mudar o modo de operação da porta.

Init Display First (Inicialize First) > Esta opção tem dois valores, AGP e PCI e é útil em duas situações:

1- Caso você esteja utilizando dois monitores, usando uma placa AGP e outra PCI. Através desta opção você poderá escolher qual das duas placas será o vídeo primário.

2- Caso você tenha uma placa mãe com vídeo onboard, pretenda substituí-lo por uma placa 3D PCI e não exista nenhum jumper ou opção no Setup para desativar o vídeo onboard. Neste caso basta configurar esta opção com o valor PCI. Assim a placa onboard continuará ativada, mas não atrapalhará mais.

USB Controller (USB Enable) > Esta opção habilita ou não o uso do controlador USB (Universal Serial Bus) embutido na placa mãe. Deixe esta opção ativada apenas caso esteja fazendo uso de algum dispositivo USB. Caso contrário, será melhor desabilitar esta porta para liberar o canal de IRQ usado por ela.

PS/2 Mouse Enable > Habilita ou não a porta PS/2 encontrada na placa mãe. Caso você não esteja utilizando esta porta, é recomendável desabilitá-la, assim deixaremos o IRQ 12, utilizado por ela, livre para uso de outros dispositivos.

UART 2 use Infrared > Atualmente, o infravermelho está sendo bastante usado para a conexão entre computadores, principalmente entre micros portáteis e até mesmo por mouses e impressoras sem fio. Para usar um dispositivo que faz a transmissão de dados por infra vermelho, conectamos um transmissor na porta serial 2 do micro. Este é uma pequena placa com um fio e um transmissor na extremidade. Esta opção do Setup permite justamente habilitar ou não o suporte à instalação deste tipo de dispositivo na Com 2.

Muitos notebooks já vem com um transmissor infravermelho instalado, neste caso habilitar esta opção já deixaria o notebook pronto para transmitir via infravermelho.

Power On Function > Encontrada apenas em placas recentes, esta opção permite configurar os botões que permitirão ligar o micro. O defaut é liga-lo apenas através do botão liga-desliga do gabinete, mas algumas placas permitem também botões alternativos:

Keyboard 98 – Ativa o botão de ligar encontrado em alguns teclados

Hot Key – Permite configurar um atalho do teclado para esta função, estão disponíveis opções como Ctrl + F1

Mouse Left, Mouse Right – Para ligar o micro pressionando um dos botões do mouse. Este recurso só irá funcionar com mouses PS/2, nada de mouses seriais ou USB.

 

Outras Opções:

Security > Esta sessão inclui as opções relacionadas com senhas e a opção de antivírus, que em outros modelos de BIOS é encontrada na sessão Advanced CMOS Setup.

Password > Esta é a opção que permite estabelecer uma senha para o micro. Por segurança, é preciso digitar a senha duas vezes, para descartar a possibilidade de haver algum erro de digitação na primeira.

Caso você deseje trocar a senha, então o BIOS pedirá que você digite primeiro a senha antiga. A checagem da senha será feita de acordo com o programado no item Security Option (Password Check) do Advanced CMOS Setup, podendo ser solicitada toda vez que o micro for inicializado (opção System), ou somente para fazer alterações no Setup (Always).

Antivírus > Em alguns BIOS este item está na sessão Advanced CMOS Setup. Caso no Setup do seu micro ele apareça aqui, basta configurá-lo como descrito na outra sessão.

IDE HDD Auto Detection (Detect IDE Master/Slave, Auto IDE) > Para um disco rígido poder ser utilizado, precisa antes ser reconhecido pelo BIOS. Este reconhecimento consiste em informar o número de trilhas, cilindros, cabeças de leitura e capacidade.

Apesar de podermos configurar estas opções manualmente, é sempre muito mais recomendável permitir ao BIOS detectar automaticamente os discos que temos instalados no sistema, o que é feito justamente nesta opção.

Caso o BIOS da sua placa seja Award, você poderá escolher entre três opções de configuração do HD: o modo Normal, o modo Large e o modo LBA. O modo LBA (Logical Block Addressing) oferece suporte a discos maiores que 504 Megabytes, sendo a opção correta, caso o seu HD seja maior do que isso e você esteja usando o Windows 95/98/NT ou qualquer outro sistema operacional que ofereça suporte a ele. O modo Normal é usado por discos menores que 504 Megabytes.

O modo Large por sua vez, permite o uso de discos maiores que 504 Megabytes em sistemas operacionais que não suportem o LBA, como versões antigas do MS-DOS e algumas versões do Unix e Linux.

Load Setup Defaults > Esta opção permite carregar os valores default do Setup para todas as opções. É útil no caso de você ter feito alterações no Setup que causem mau funcionamento do micro e não lembre quais são. Carregando os valores default, o CMOS Setup carregará suas configurações originais, de fábrica.

Nos BIOS AMI, geralmente encontramos além da opção de carregar os valores default, mais duas opções:

Load Fail Safe Defaults > Quando o computador começa a apresentar mau funcionamento em algum de seus componentes, começam a ocorrer travamentos constantes, além de outros problemas misteriosos. Muitas vezes o micro sequer chega a inicializar.

Fail Safe significa “à prova de falhas”. Esta opção permite justamente configurar o Setup com valores que visam exigir o mínimo possível dos componentes, para que o micro pelo menos funcione. São desabilitados os caches L1 e L2, as memórias passam a funcionar muito mais lentamente, são ativadas todas as opções que visam detectar erros durante o boot e, muitas vezes, é inclusive diminuído o clock do processador. Geralmente, usando este recurso, o micro volta a funcionar, apesar de com uma velocidade muito baixa. O passo seguinte é ir habilitando os caches e aumentando a velocidade das memórias aos poucos, a fim de descobrir qual componente está falhando.

Load Best Values > Esta opção é justamente o oposto da anterior, carregando valores que visam extrair o máximo de desempenho. Se você não tiver paciência para configurar manualmente todas as opções do Setup, esta pode ser uma boa opção para otimizar o desempenho do micro. Se você estiver usando componentes de boa qualidade, não deve ter problemas usando esta opção, caso contrário, podem surgir problemas inesperados, relacionados geralmente com falhas na memória RAM ou cache. De qualquer maneira, bastará carregar os valores default do Setup ou configurar manualmente as opções para tudo voltar à normalidade.

Save & Exit Setup > Terminando de configurar o Setup, basta usar esta opção para salvar todas as alterações feitas e sair do Setup. Será perguntado então se é realmente isto que você deseja, bastando responder “yes” à pergunta.

Exit Without Saving > Se você se arrependeu de alguma alteração feita, basta usar esta opção para sair do Setup sem salvar nenhuma alteração.

 

AGP Driving Control:

A opção AGP Driving Control, pode ser encontrada em várias placas mãe atuais, como a Abit VT6 entre várias outras. De uns tempos pra cá venho recebendo alguns mails perguntando sobre esta opção. Como estava pesquisando sobre ela, não pude responder as perguntas, por isso estou aproveitando para responder a todos que tem curiosidade sobre ela aqui.

Basicamente existem dois valores para a opção, Auto, ou Manual. O defaut é Auto, mas alterando a opção para Manual, é possível escolher vários valores em hexa, de 00h a FFh. Mas para que diabos serve essa opção? Lendo o manual de qualquer uma das placas você encontrará apenas uma vaga descrição, sugerindo manter o valor “Auto”, eu sempre recomendo a leitura dos manuais, mas neste caso eles não ajudam muito…

Em primeiro lugar, esta opção é encontrada apenas em placas mãe com chipsets Via. Ela determina a potência do sinal AGP usado para estabelecer comunicação entre a placa de vídeo e o processador. A potência do sinal tem uma relação direta com o tempo de acesso do barramento, por isso tem influência sobre a performance da placa de vídeo 3D.

Na opção “Auto” é usado uma espécie de denominador comum, visando manter compatibilidade com o maior número possível de placas, porém sacrificando parte da performance. O uso do valor Auto é uma dos motivos do desempenho AGP inferior mostrado pelos chipsets Via em geral em comparação com chipsets Intel.

No caso dos Intel esta opção não aparece no Setup, pois o valor Auto é fixo, inalterável. O motivo é que os chipsets Intel tem uma detecção automática do valor muito mais precisa, o que permite a eles configurar automaticamente o melhor valor para a placa que estiver sendo usada. Como os chipsets Via não possuem uma auto detecção tão apurada, é dada no Setup a opção de estabelecer manualmente o valor desejado. Cada placa de vídeo tem sua configuração ideal neste caso.

Não existe nenhum cálculo para descobrir o melhor valor AGP Driving Control para cada placa de vídeo, infelizmente dependemos dos fabricantes para descobrir o valor ideal. O problema é que muitas vezes os fabricantes disponibilizam esta informação apenas para integradores, e não para o consumidor final, novamente sugerindo o valor “Auto”… Tanto sigilo pode ser justificado pelo fato de que configurando o valor incorretamente o desempenho da placa 3D pode ficar comprometido. Em alguns casos é possível que o PC simplesmente deixe de dar boot.

A Asus por exemplo, recomenda o valor B9h para a Asus GeForce 6600 Pure, a Tyan recomenda o valor A8h para qualquer placa mãe Tyan + uma placa GeForce 256, e assim por diante. Garimpando, é possível encontrar informações tanto nos sites dos fabricantes de placas mãe, quanto nos sites dos fabricantes de placas. Só não procure no site da Via, pois é perda de tempo. Misteriosamente, eles, que seriam os maiores interessados em esclarecer sobre a utilidade da opção simplesmente mantém sigilo absoluto sobre ela.

Como disse, a configuração ideal desta opção varia de acordo com a placa mãe e placa 3D que estiverem sendo usadas, mudando de acordo com a combinação. É uma espécie de ajuste fino que permite obter um pequeno ganho de performance.

 

Fonte: Hardware, Manual completo (2002) e Hardware, O Guia Definitivo, Curso de Hardware, Internet, etc.

2010 12 13